Challenges to ensuring the safety of emerging nanomaterials

Tutorial

AAAR Annual Conference October 20 2000, Orlando FL

Andrew D. Maynard

Chief Science Advisor, Project on Emerging Nanotechnologies

Woodrow Wilson International Center for Scholars (in partnership with the Pew Charitable Trusts)

AAAR conference, Orlando FL, 10/20/08

The art and science of building stuff that does stuff

at the nanometer scale

Richard Smalley

Nanotechnology can... Make better products

I wish my sunscreen wasn't so unsightly

I wish my tennis racquet was lighter and stronger

I wish my socks didn't

smell so much!

I wish I could keep leftovers for longer, before they go off

I wish spilt red wine would run off my pants without staining

I wish I could get more songs on my iPod

Over 800 listed manufacturer-identified nanotech consumer products: www.nanotechproject.org/consumerproducts

Source: 2004 Lux Research Report: "Sizing nanotechnology's value chain"

Nanotechnology can...

Make A Difference

Does the *added value* that nanotechnology brings to products, lead to unconventional potential to cause harm?

Nano-ZnO: One chemistry, many shapes Courtesy of Prof. Z.L. Wang, Georgia Tech

A thought experiment

The potential significance of structure on nanomaterial impact

Relevance of Compositional Structure

Setting Boundaries

Engineered nanomaterials which potentially present new challenges

Maynard and Kuempel (2005), J. Nanopart. Res. 7(6) 587-614

Structure-related hazard: Particle Size

TiO₂ Instillation in Rats

Structure-related hazard: Surface Area

TiO₂ Instillation in Rats

Structure-related hazard: Surface Chemistry Rats

Particle Surface Area Dose (m²/lung)

Structure-related hazard: Crystallinity

In vitro studies - Human Dermal Fibroblasts

Structure-related hazard: Translocation

Translocation following inhalation - Nose to Brain

(Based on Oberdörster, G., et al. (2004), Inhal. Toxicol. 16 (6-7), 437-445)

Structure-related hazard: Translocation

Translocation following inhalation - Nose to Brain

⁽Based on Oberdörster, G., et al. (2004), Inhal. Toxicol. 16 (6-7), 437-445)

Structure-related hazard - Translocation

Translocation following inhalation - Lungs to Liver

Scale-specific hazard: Skin Penetration

4.6 nm spherical Quantum dots in porcine skin flow-through cell

Confocal Scanning Microscope images

Quantum Dot fluorescence channel

Fluorescence intensity scan

Ryman-Rasmussen, J. P., J. E. Riviere and N. A. Monteiro-Riviere (2006). Tox. Sci. 91:159-165

Scale-specific hazard: Form

Interfering with biology at the nanoscale

Linse, S., C. Cabaleiro-Lago, W.-F. Xue, I. Lynch, S. Lindman, E. Thulin, S. E. Radford and K. A. Dawson (2007). "Nucleation of protein fibrillation by nanoparticles." Proc. Natl. Acad. Sci. U. S. A. 104: 8691-8696.

Structure-related hazard: Shape

Influence of shape on a material's risk profile

Carbon nanotubes that look like harmful asbestos fibers, behave like harmful asbestos fibers

Poland, C. A., R. Duffin, I. Kinloch, A. Maynard, W. A. H. Wallace, A. Seaton, V. Stone, S. Brown, W. MacNee and K. Donaldson (2008). "Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study." Nature Nanotechnology doi:10.1038/nnano.2008.111.

Nanoparticles do not play by the rules

www.youtube.com/watch?v=gcOzMRFO0I4

Classifying diverse nanoparticles

Heterogeneous *Core-surface*

High aspect ratio Homogeneous

Complex non-spherical

Homogeneous

Heterogeneous *Distributed*

Active *External stimuli*

00

Homogeneous agglomerates Single particle class

Multifunctional Complex responses

Heterogeneous aggregates Many particle classes

Maynard, A. D. and R. J. Aitken (2007). Nanotoxicology 1(1): 26-41. Potentially significant attributes

Differentiated component rele	ease Shape	
Core-surface Heterogeneity	Charge	
Response to environment	Porosity	
Response to stimulus	Surface Area	
Surface Chemistry Cr	ystal Structure	
Composition Distributed Heterogeneity		
Solubility Propensity to ch	ange structure	

Maynard, A. D. and R. J. Aitken (2007). Nanotoxicology 1(1): 26-41.

Monitoring nanoscale aerosol exposures Options

Assessing the relevance of different exposure metrics

Surface Area

Aerosol Surface Area Measurement

Using Attachment Rate

AEROSOL CHARGE SURFACE

DC2000 CE Diffusion Charger EcoChem

Aerosol Surface Area Measurement

Diffusion Charger Response

Ku, B. K. and Maynard, A. D. J. Aerosol Sci. 36 (9), 1108-1124, 2005.

Aerosol Surface Area Measurement

Measuring deposited surface area

Particle Number

Particle size-resolved exposure measurements

Aerosol exposure during carbon black bagging

Kuhlbusch, T. A. J., S. Neumann, et al. (2004). J. Occup. Environ. Hyg. 1(10): 660-671.

Number, Mass or Surface Area

COMMENTARY

Safe handling of nanotechnology

The pursuit of responsible nanotechnologies can be tackled through a series of grand challenges, argue **Andrew D. Maynard** and his co-authors.

hen the physicist and Nobel laureate Richard Feynman challenged the science community to think small in his 1959 lecture 'There's Plenty of Room at the Bottom', he planted the seeds of a new era in science and technology. Nanotechnology, which is about controlling matter at nearatomic scales to produce unique or enhanced materials, products and devices, is now maturing rapidly with more than 300 claimed nanotechnology products already on the market1. Yet concerns have been raised that the very properties of nanostructured materials that make them so attractive could potentially lead to unforeseen health or environmental hazards2.

Nature Vol. 444/16 November 2006

tainties surrounding the health and nature. For instance, small particles of inhaled strategic research is to support sustainable nano-

Sophisticated data inversion can offer insight into nanoaerosol exposure from relatively few measurements

Diameter

Woo, K.-S., Chen, D.-R., Pui, D. Y. H. and Wilson, W. E. (2001). Use of continuous measurements of integral aerosol parameters to estimate particle surface area. Aerosol Sci. Tech. 34:57-65.

Maynard, A. D. (2003). Estimating aerosol surface area from number and mass concentration measurements. Ann. Occup. Hyg. 47:123-144. Sophisticated data inversion can offer insight into nanoaerosol exposure from relatively few measurements

Diameter

Woo, K.-S., Chen, D.-R., Pui, D. Y. H. and Wilson, W. E. (2001). Use of continuous measurements of integral aerosol parameters to estimate particle surface area. Aerosol Sci. Tech. 34:57-65.

Maynard, A. D. (2003). Estimating aerosol surface area from number and mass concentration measurements. Ann. Occup. Hyg. 47:123-144.

SWCNT Aerosol

Generated from dry material through energetic agitation

Maynard, A. D., P. A. Baron, et al. (2004). J. Toxicol. Environ. Health 67(1): 87-107.

Characterizing airborne carbon nanotubes

Maynard, A. D., B. K. Ku, M. Emery, M. Stolzenburg and P. H. McMurry (2007). J. Nanopart. Res. 9(1): 85-92.

Structural Parameter

Proportional to specific surface area

Selection_{DMA}
$$\propto \pi \overline{d}_m^2$$
 - units of surface area
Selection_{APM} $\propto qE \frac{\overline{r}}{\omega^2}$ - units of mass

$$\Gamma = \frac{\pi \overline{d}_m^2}{q\overline{r}} \frac{\omega^2}{E}$$

Maynard, A. D., B. K. Ku, M. Emery, M. Stolzenburg and P. H. McMurry (2007). J. Nanopart. Res. 9(1): 85-92.

Structural Parameter

Predicted Values

Particle description	Mobility Diameter	Predicted value of Gamma (m ² /g)
Compact non-tubular carbon particles	150 nm	20
Open agglomerate of single walled carbon nanotube with 30% Fe	150 nm	860
Open agglomerate of 5 nm diameter Fe particles	150 nm	150
Compact single walled carbon nanotubes with 30% Fe	31 nm	58
Open agglomerate of 5 nm diameter nanoropes with 30% Fe	31 nm	240

150 nm mobility diameter particles

Maynard, A. D., B. K. Ku, M. Emery, M. Stolzenburg and P. H. McMurry (2007). J. Nanopart. Res. 9(1): 85-92.

31 nm mobility diameter particles

Maynard, A. D., B. K. Ku, M. Emery, M. Stolzenburg and P. H. McMurry (2007). J. Nanopart. Res. 9(1): 85-92.

Agglomeration - simple model

of 10, through agglomeration

Agglomeration - complex model

Using the General Dynamic Equation

Maynard, A. D. and Maynard, R. L. (2002). A derived association between ambient aerosol surface area and excess mortality using historic time series data. Atmos. Env. 36:5561-5567.

Particle deposition in the lungs

Modeled lung deposition. Mouth and nose breathing, person at rest.

Source: Multiple Pathway Deposition Model (MDEP), CIIT

Filter penetration

Japuntich, D. A., L. M. Franklin, et al. (2007). J. Nanopart. Res. 9(1) 93-107

Pui, D. Y. H., Qi, C., Stanley, N., Oberdörster, G. and Maynard, A. (2008). Recirculating Air Filtration Significantly Reduces Exposure to Airborne Nanoparticles. Environ Health Perspect doi:10.1289/ehp.11169.

Exposure Management

Control Banding - Concept

Amount Used	Low Dustiness	Medium Dustiness	High Dustiness	
Hazard Group A				
Small	1	1	1	
Medium	1	1	2	
Large	1	2	2	
Hazard Group B				
Small	1	1	1	
Medium	1	2	2	
Large	1	3	3	
Hazard Group C				
Small	1	1	2	
Medium	2	3	3	
Large	2	4	4	
Hazard Group D				
Small	2	2	3	
Medium	3	4	4	
Large	3	4	4	
Hazard Group E				
For all hazard group E substances, choose control approach 4				

Parameters

Hazard Group Dustiness Amount Used

Control Approach

General Ventilation Engineering Control Containment Specialist Advice

www.ilo.org

Creative Risk Management

Can we learn from control banding?

Exposure Index

Impact Index

Surface Activity

Control Approach

General Ventilation Engineering Control Containment **Specialist Advice**

Maynard, A., D. (2007). Nanotechnology: The next big thing, or much ado about nothing? Ann. Occup. Hyg. 51:1-12.

Novel Materials

Unconventional material behavior leads to unconventional risks

Knowledge of aerosol behavior provides insight into "new" mechanisms of impact

Understanding aerosol behavior can help monitor and reducing potential impact

Aerosol science can contribute to the development of new products and processes that are "safe by design"

Responsible Development

ETC Group

Additional Reading (Selected)

Pui, D. Y. H., Qi, C., Stanley, N., Oberdörster, G. and Maynard, A. (2008). Recirculating Air Filtration Significantly Reduces Exposure to Airborne Nanoparticles. Environ Health Perspect doi:10.1289/ehp.11169.

Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., Stone, V., Brown, S., MacNee, W. and Donaldson, K. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology 3:423-428.

Hansen, S. F., Maynard, A., Baun, A. and Tickner, J. A. (2008). Late lessons from early warnings for nanotechnology. Nature Nanotechnology 3:444-447.

Maynard, A. D., Ku, B. K., Emery, M., Stolzenburg, M. and McMurry, P. H. (2007). Measuring particle size-dependent physicochemical structure in airborne single walled carbon nanotube agglomerates. J. Nanopart. Res. 9:85-92.

Maynard, A., D. (2007). Nanotechnology: The next big thing, or much ado about nothing? Ann. Occup. Hyg. 51:1-12.

Oberdörster, G., Stone, V. and Donaldson, K. (2007). Toxicology of nanoparticles: A historical perspective. Nanotoxicology 1:2 - 25.

Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdörster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J. and Warheit, D. B. (2006). Safe handling of nanotechnology. Nature 444:267-269.

Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Finkelstein, J. and Oberdorster, G. (2006). Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 114:1172-1178.

Ku, B. K. and Maynard, A. D. (2006). Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. J. Aerosol Sci. 37:452-470.

Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fiber Toxicol. 2:doi:10.1186/1743-8977-1182-1188.

Maynard, A. D. and Kuempel, E. D. (2005). Airborne nanostructured particles and occupational health. Journal Of Nanoparticle Research 7:587-614.

Ku, B. K. and Maynard, A. D. (2005). Comparing aerosol surface-area measurement of monodisperse ultrafine silver agglomerates using mobility analysis, transmission electron microscopy and diffusion charging. J. Aerosol Sci. 36:1108-1124.

Maynard, A. D., Baron, P. A., Foley, M., Shvedova, A. A., Kisin, E. R. and Castranova, V. (2004). Exposure to Carbon Nanotube Material: Aerosol Release During the Handling of Unrefined Single Walled Carbon Nanotube Material. J. Toxicol. Environ. Health 67:87-107.

Pui, D. Y. H., Flagan, R. C., Kaufman, S. L., Maynard, A. D., de la Mora, J. F., Hering, S. V., Jimenez, J. L., Prather, K. A., Wexler, A. S. and Ziemann, P. J. (2004). Experimental methods and instrumentation. Journal Of Nanoparticle Research 6:314-315.

Brown, L. M., Collings, N., Harrison, R. M., Maynard, A. D. and Maynard, R. L., eds. (2003). Ultrafine Particles in the Atmosphere. Imperial College Press, London, UK.

Maynard, A. D. and Brown, L. M. (2000). Overview of methods for analysing single ultrafine particles. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 358:2593-2609.

Preining, O. (1998). The physical nature of very, very small particles and its impact on their behavior. J. Aerosol Sci. 29:481-495.

Andrew D. Maynard PhD

Chief Science Advisor Project on Emerging Nanotechnologies Woodrow Wilson International Center for Scholars

> Tel: +1 202 691 4311 Email: andrew.maynard@wilsoncenter.org Web: www.nanotechproject.org

> > Blog: 2020Science.org