In just a few short weeks, Zika has shot from being an obscure infection to a headline-hitting public health disaster. The virus is spreading rapidly across the Americas (and potentially beyond), is suspected of being associated with birth defects that affect brain development and currently has no specific vaccine or treatment. Understandably, scientists are scrambling to respond to what the World Health Organization is now calling a “Public Health Emergency of International Concern.” In the arsenal of weapons against the mosquito-borne disease, there are tried and tested approaches that include the liberal application of insecticides and repellents, widespread use of mosquito nets and elimination of breeding sites. Yet to combat Zika and other mosquito-borne disease, more is needed. Which is why scientists are increasingly turning to emerging technologies such as synthetic biology for solutions. The joke goes that if you get 10 synthetic biologists in a room together, you’ll get 10 different explanations of what they do. After all, synthetic biology is a young and rapidly evolving field. But underneath this lack of clarity lies a clear and profound shift in our technological capabilities – the ability to “upload” genetic code to computers, edit and manipulate it, and then “download” it into living organisms. In effect, we’ve discovered how to hack biology – how to code in DNA and computer-design living things. It’s early days yet – biology is complex and messy and doesn’t follow the same rules as computer code. But increasingly, scientists are learning how to use synthetic biology to change how organisms operate – including insects that carry dangerous human diseases, such as Zika. Aedes aegypti mosquitoes carry Zika, dengue and chikungunya. Paulo Whitaker Turn off a gene and goodbye mosquitoes Using synthetic biology-based genetic engineering techniques, the British company Oxitec (owned by U.S.-based Intrexon Corp) has

Continue Reading →